
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 273 (2004) 695–711

Closed-loop non-linear control of an initially imperfect beam
with non-collocated input

W. Lacarbonaraa,*, H. Yabunob

aDipartimento di Ingegneria Strutturale e Geotecnica, University of Rome La Sapienza,

via Eudossiana 18,00184 Rome, Italy
b Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba-City 305-8573, Japan

Received 2 September 2002; accepted 8 May 2003

Abstract

A closed-loop non-linear control strategy to reduce the flexural vibrations of a hinged–hinged initially
imperfect beam is investigated. The beam is subjected to a harmonic transverse excitation involved in a
primary resonance of the first antisymmetric mode. A closed-loop symmetric control action—bending
moments imparted by two piezoceramic actuators—although non-collocated, is designed to be non-
orthogonal, in a non-linear sense, to the excited mode and be capable of exerting resonant beneficial
damping effects onto it. The approximate responses of the controlled and uncontrolled beam are
constructed by applying the method of multiple scales directly to the integral–partial differential equations
of motion and boundary conditions. The frequency response curve governing the primary resonance of the
uncontrolled system is compared with that obtained when the controller is in action. It is shown that, by
exerting feasible control efforts, the response of the beam may be reduced by an order of magnitude and is
stable in the overall frequency range in contrast with the uncontrolled large-amplitude responses which
undergo jumps at the saddle-node bifurcations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow structures such as shallow arches and shells are widely used in civil engineering (e.g.,
bridges) as well as in mechanical and aerospace applications, often employed as subcomponents
of larger structures. It is well known that the presence of initial curvature induces quadratic
internal forces which act along with cubic non-linear forces whose nature depends on the specific
system with the associated boundary conditions. External resonant excitations may be sources of
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undesirable flexural vibrations. Among external resonances there are primary and secondary
resonances (of the combination, sub-harmonic, and super-harmonic types) and parametric
resonances [1].

The task of reducing the detrimental effects of resonant disturbances has been tackled
employing a variety of approaches ranging from direct disturbance rejection via classical control
theory techniques to the use of vibration absorbers attached to the main system as dedicated
substructures. For example, a number of works have addressed both theoretically and
experimentally the problem of controlling transverse oscillations in distributed-parameter systems
by parametric-type control actions [2,3] or by coupling autoparametrically the system to an
electronic circuit to exploit the saturation phenomenon due to a two-to-one internal resonance [4].
In Ref. [5] it was shown that a parametric resonance in a cantilever beam can be suppressed by
attaching a pendulum absorber to the beam tip and exploiting the low static friction produced at
its pivot. The friction acts to shift the unstable region (where the parametric resonance is
activated) in the excitation amplitude-frequency plane. As an alternative to passive approaches, a
closed-loop feedback method was developed theoretically and experimentally to stabilize the
principal parametric resonance in a cantilever beam using a piezoceramic patch in Ref. [6]. By
employing the method of multiple scales, it was shown that a velocity- and displacement-based
linear feedback law possesses the ability to shift the unstable region so that the parametric
resonance is suppressed.

In a recent paper [7], using the asymptotic perturbation method, the primary resonance of a
cantilever beam under state feedback control with a time delay has been investigated. Analysis of
the modulation equations of the amplitude and phase of the oscillator has indicated that vibration
control can be performed with appropriate time delay and feedback gains.

A general methodology was proposed in Refs. [8,9] to design non-linear control schemes for
open-loop resonance cancellation in discrete and distributed-parameter weakly non-linear systems
by employing a perturbation approach. It was shown that a direct perturbation expansion of the
system dynamics facilitates understanding of the mechanisms by which the non-linear actuator
inputs may be used to suppress the resonant parts of the excitation. Depending on the specific
system, different mechanisms for generating effective non-linear actuator actions can be exploited.
Furthermore, when excitations and actuations are non-collocated (e.g., when the actuation has
zero projection, in a linear sense, on the dynamics to be controlled), classical linear control
techniques break down. On the contrary, perturbation expansions of the non-linear system
dynamics indicate how, due to the inherent structural non-linearities, the non-linear controller
action may be intelligently designed to cancel or reduce significantly the resonances.

To show the feasibility of the open-loop resonance-cancellation methodology, a control
strategy was developed in Ref. [9] for a shallow arch excited by a longitudinal end-displacement
which is parametrically resonant with the first antisymmetric mode and the control input is a
transverse force at the midspan. The exploited mechanism was a sub-harmonic resonance of order
one-half. In a previous work [10], similar concepts were employed to address non-collocated
disturbances via non-linear actuator action in a pendulum-type crane architecture.

Lately, the open-loop non-linear vibration control method proposed in Ref. [9] has been
implemented theoretically and experimentally in Ref. [11]. Therein, the principal parametric
resonance has been stabilized in a magnetically levitated body using an actively actuated
pendulum-type vibration device.
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Nonetheless, during the transient phase or, in general, when the disturbance is subjected to
some changes, open-loop schemes show their inherent limitations. This is the basic motivation for
investigating, in the present paper, a closed-loop non-linear strategy to control a hinged–hinged
initially imperfect beam whose first antisymmetric mode is excited via a primary resonance
disturbance.

The symmetric control action—bending moments imparted by symmetrically distributed
piezoceramic actuators—is non-collocated as it is orthogonal, in a linear sense, to the externally
excited mode. The closed-loop control input is designed so as to be capable of reducing the
beam flexural vibrations at resonance with feasible control efforts. Proving that a non-linear
controller with a symmetric input can reduce also antisymmetric vibrations entails the expansion
of the control capabilities by exploitation of the structural non-linearities with respect to the
linear theory. The same controller designed primarily to reduce symmetric oscillations
may be used to reduce antisymmetric vibrations which, under some excitation conditions,
can be excited simultaneously with symmetric vibrations. Because the fact that a symmetric
input has control authority over symmetric vibrations is trivial, in the present study, the
effectiveness of the symmetric non-linear input in reducing antisymmetric vibrations is
analytically validated.

Mixed-mode (symmetric/antisymmetric) vibrations occur, e.g., in suspension bridges where
usually the lowest mode is antisymmetric and is close to the first symmetric mode. Further, long-
span bridges are usually designed with a moderate initial rise; however, the non-linear restoring
forces are mainly generated by the supporting cables other than by the beam centerline stretching
(as it occurs in beams with immovable hinges). Moreover, typical earthquakes possess most of the
energy around the lowest natural frequencies. Because the seismically induced support motions
are not, generally, in phase (for long-span bridges), they may excite also the first antisymmetric
mode.

The objective of this work is to provide a proof of concept for the general non-linear control
methodology. In this perspective, it is not claimed, for example, that piezoceramic patches are
viable actuators for long-span bridges. However, it is not impractical, for truss bridges, to
conceive inclusion of intermediate strain-actuated active trusses that can supply equivalent
bending moments along the beam span, similarly to the piezoceramic action.

In Section 2, the equations of motion of the initially imperfect beam including the piezoceramic
actuators are presented in dimensional and non-dimensional forms. In Section 3, the derivation of
the closed-loop control strategy via perturbation treatment of the governing equations is
discussed. The features of the system uncontrolled and controlled responses are also discussed in
detail. In Section 4, the control performance is investigated. Finally, in Section 5, some concluding
remarks are presented.

2. Problem formulation and equations of motion

The local planar flexural dynamics of a hinged–hinged initially imperfect homogeneous Euler–
Bernoulli beam around the initial configuration #c (Fig. 1) are governed by the following equation
in dimensional form [12]:
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where #x is the space co-ordinate along the horizontal projection of the centerline of the arch and #t

is the dimensional time; #c and #w indicate the initial rest configuration and the dynamic deflection
measured from the rest configuration, respectively; c is the span of the beam; rb is the mass
density; Eb is Young’s modulus; Ab and Ib are the area and the moment of inertia of the cross-
section, respectively; #c is the viscous damping coefficient; #F is the applied transverse load; and #U

indicates, at this stage, a general control input. Both ends of the beam are hinged whereby both
the vertical and horizontal displacement components are restrained to be zero.

The equation of motion in the transverse direction, Eq. (1), is obtained after statically
condensing the balance equation in the longitudinal direction. The longitudinal static
condensation leads to the following expression for the axial force #N:
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Fig. 1. Schematics of the beam with the control architecture.
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The adopted mechanical model, based on linearized curvature, on a linear constitutive law
relating bending moment and curvature, and on non-linear extension of the centerline, describes
reasonably well the system behavior provided that the beam is sufficiently shallow and slender (the
ratio between the thickness and radius of curvature is much smaller than unity). In this case, the
mentioned decoupling between the longitudinal and transverse dynamics allows to solve for the
transverse problem described by Eqs. (1)–(2) which is governed by quadratic (due to the moderate
initial curvature) and cubic non-linearities (due to the axis extension). Inertia non-linearities do not
appear because the longitudinal inertia is neglected. Further, the bending curvature has been
linearized because moderately large deflections and small dynamic rotations are assumed.

The actuation is provided by two piezoceramic actuators mounted at given locations denoted
by #xk (i.e., co-ordinate of the midspan axis of the piezoceramic patch) for the kth actuator of
length ck: The ensuing control actions enter the equations of motion in the form [13]

#Uð #x; #tÞ ¼
X2

k¼1

cMMkð#tÞ
d2Hð #x � #x�

k Þ
d #x2

�
d2Hð #x � #xþ

k Þ
d #x2

" #
; ð3Þ

where #x8
k ¼ #xk8ck=2 and H denotes the Heaviside unit-step function. In Eq. (3), cMMkð#tÞ is the

time-varying amplitude of the bending moments delivered by the piezo actuators and expressed, in
turn, as [13] cMMkð#tÞ ¼ 1

2
Ecwcd31ðhb þ hcÞ #Vð#tÞ; ð4Þ

where wc and hc are the width and thickness of the piezoceramic cross-section, respectively; hb is
the thickness of the beam; d31 and Ec are the transverse charge constant and Young’s modulus of
the piezoelectric material, respectively; and #Vð#tÞ is the applied time-varying voltage.

A suitable non-dimensionalization of the governing equations yields the associated non-
dimensional form as
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with boundary conditions

w ¼ 0 and @2w=@x2 ¼ 0 at x ¼ 0 and 1; ð6Þ

where #x=x ¼ c; #w=w ¼ #c=c ¼ rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ib=Ab

p
; t=#t ¼ ob ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb=ðrbAbc

4Þ
q

and e indicates a small
dimensionless number (i.e., e51) used as an ordering parameter.

The non-dimensional parameters are defined as

en1F ¼ ðc4=EbIbrbÞ #F; en2c ¼ c2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rbAbEbIb

p
#c; and en3Mi ¼ c2=ðEbIbr2bÞcMMi:

The initial shape of the beam is assumed in the form of a half-sinusoidal shape, namely,
c ¼ b sin px: Then, the eigenvalue problem governing the undamped unforced vibrations around
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the initial configuration c is cast in the form
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with the associated boundary conditions. Because the non-dimensional inertia is unitary, the
eigenmodes are normalized in the standard formZ 1

0

f2
kdx ¼ /fkfkS ¼ 1;

and are expressed as fk ¼
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sin kpx with the associated circular frequencies o1 ¼ p2
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p
and ok ¼ k2p2; for kX2:

As reported in Ref. [14], hinged–hinged initially imperfect beams may possess internal
resonances depending on the non-dimensional amplitude of the initial imperfection. Namely, a
two–to–one internal resonance between the first and second modes occurs when bE3

ffiffiffiffiffi
14

p
:

Moreover, one–to–one internal resonances between the first and second modes and between the
first and third modes may be activated at the crossover points when b is near

ffiffiffiffiffi
30

p
and 4

ffiffiffiffiffi
10

p
;

respectively. Prediction of the possible modal interactions in the beam is important to single out
the conditions when the proposed control method would be ineffective. In fact, as it is illustrated
in the next section, the control strategy is designed to reduce, within an acceptable level, the
primary resonance of the second mode when this mode is away from internal resonances (i.e., for
proper ranges of the initial imperfection amplitude).

3. Closed-loop control strategy: a perturbation approach

In this section, the non-linear control strategy is developed employing a perturbation approach
[8–10]. The method of multiple scales [15] is used to attack directly the governing equations of
motion and boundary conditions instead of treating finite degree-of-freedom discretized versions
because it has been shown that treatment of a discretized set of distributed-parameter systems
with quadratic and cubic non-linearities may lead to erroneous quantitative and, in some cases,
qualitative results [16]. Therefore, the problem of order reduction is overcome along with other
insidious drawbacks as spillover effects that need to be considered when designing control
schemes for distributed-parameter systems.

The responses of the system to a primary resonance of the second mode are constructed when
this mode does not interact with any other mode. The disturbance is F ðx; tÞ ¼ f ðxÞ cosOt with
O ¼ #O=obEo2 and /f2ðxÞ f ðxÞS ¼

R 1

0 f2ðxÞ f ðxÞ ¼ Da0: At the same time, the system is
subjected to a piezo-actuator control input which will be designed to maximize the reduction of
the primary resonance vibrations.

To impart a purely symmetric input to the system, a symmetrical controller arrangement is
necessary; in other words, it is required that the piezoceramic patches be placed symmetrically
with respect to the beam midspan plane and be driven symmetrically. This entails that one piezo-
actuator driver only is needed (Fig. 1). In particular, two equal piezoceramic patches ðc1 ¼ c2Þ are
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attached to the beam surface so that x1 þ x2 ¼ 1 and M1 ¼ M2 ¼ M: On account of Eq. (4), the
dimensional piezomoment becomescMMð#tÞ ¼ 1

2
Ecwcd31ðhb þ hcÞ #kc #wð #xc; #tÞ#vð #xc; #tÞ;

whereas its non-dimensional counterpart is MðtÞ ¼ kcwðxc; tÞvðxc; tÞ; where

kc ¼
1

2

Ecwcðhb þ hcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIbrbAb

p d31
#kc: ð8Þ

The control signal (i.e., the applied voltage) is assumed as a quadratic law of the form

#VðtÞ ¼ #kc #wð #xc; #tÞ#vð #xc; #tÞ; ð9Þ

where #v ¼ ’#w denotes the beam velocity field and #kc is the control gain. In Eq. (9), #xc indicates the
co-ordinate of the reference point of the beam where the displacement and velocity are sensed to
be fed back to the controller. The rationale behind this choice is the following. A preliminary
direct perturbation expansion of the system dynamics suggests that the assumed quadratic control
law (9) possesses the potential for producing appropriate resonant terms at third order where the
external primary resonance effects are manifested. In fact, denoting with wi and vi the
displacement and velocity at the ith order, respectively, it is, at first order, w1pA expðio2tÞ and
v1pio2A expðio2tÞ whereas, at second order, part of the displacement is pio2A2 expð2io2tÞ
where A indicates the complex-valued amplitude of the response at the system natural frequency
(i is the imaginary unit). Consequently, the third-order structural non-linear forces G2ðw1;w2Þ
(G2 is the operator governing the quadratic forces) are such to create terms pio2A2 %A where the
bar denotes the complex conjugate. Because the control-induced force has the same phase as that
of the damping force p2io2mA expðio2tÞ; it is expected to act as a non-linear damping force.

In the next section, the perturbation treatment of the system dynamics with the controls is
shown and discussed in detail.

3.1. Perturbation analysis

As typical for primary resonances, a third-order uniform expansion of the solutions of Eqs. (5)
and (6) is determined. When the amplitude of the initial imperfection is of order one (i.e., b ¼
Oð1ÞÞ; then all the coefficients of the linear and non-linear terms in the governing equation of
motion are Oð1Þ: Consequently, a third-order uniform expansion for the deflection and the
associated velocity is sought in the form

wðx; tÞE
X3

k¼1

ekwkðx;T0;T2Þ; vðx; tÞE
X3

k¼1

ekvkðx;T0;T2Þ; ð10Þ

where T0 ¼ t is the fast scale associated with variations occurring at the frequency of the second
mode, and T2 ¼ e2t is the stretched time scale governing the non-linear slow variations. The small
dimensionless parameter e is the same parameter introduced in the non-dimensional equation of
motion as ordering parameter.

The solution is not assumed to depend on the scale T1 ¼ et because resonant terms are
produced by the external disturbance, control input and structural non-linearities at third order
only. Consequently, the first derivative with respect to time can be expressed as @=@t ¼
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D0 þ e2D2 þ? where Dn ¼ @=@Tn: Further, the nearness of the primary resonance is expressed
introducing a detuning parameter s such that O ¼ o2 þ e2s with s ¼ Oð1Þ:

Because the beam is excited via an external primary resonance, the excitation and damping are
ordered by letting n1 ¼ 3 and n2 ¼ 2 so that the damping, excitation and non-linear resonant
terms balance each other at third order. According to previous comments, the control input
governed by the quadratic law (9) is deliberately chosen to appear at second order by putting
n3 ¼ 0 and assuming kc ¼ Oð1Þ:

Substituting Eq. (10) into the system of first-order (in time) equations of motion and boundary
conditions, using the independence of the time scales, and equating coefficients of like powers of e
yields

order e

D0w1 � v1 ¼ 0; D0v1 þLw1 ¼ 0: ð11; 12Þ
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1

2
f ðxÞðeiOT0 þ ccÞ; ð16Þ

where c ¼ 2m and cc indicates the complex conjugate of the preceding terms. The boundary
conditions at all orders are given by Eq. (6).

Because the second mode is directly excited by the primary-resonance disturbance and,
indirectly, by the control input and because this mode cannot interact with any other mode (for
the absence of internal resonances), the solution at order e is assumed as

w1 ¼ AðT2Þeio2T0f2ðxÞ þ %AðT2Þe�io2T0f2ðxÞ: ð17Þ

Substituting Eq. (17) and v1 ¼ D0w1 into the second-order problem, Eqs. (13) and (14), yields

D0w2 � v2 ¼ 0: ð18Þ
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D0v2 þLw2 ¼ðA2e2io2T0 þ A %AÞc00
Z 1

0

ðf0
2Þ

2dx

þ io2kcf
2
2cA

2e2io2T0 �
X2

k¼1

½H00ðx � x�
k Þ �H00ðx � xþ

k Þ� þ cc; ð19Þ

where the prime indicates differentiation with respect to x and f2c ¼ f2ðxcÞ is the value attained
by the second mode shape at xc:

Then, the second-order solution can be expressed as

w2 ¼ A2e2io2T0w1ðxÞ þ A %Aw2ðxÞ þ io2kcf
2
2cA

2e2io2T0UcðxÞ þ cc; ð20Þ

v2 ¼ 2io2A2e2io2T0w1ðxÞ � 2o2
2kcf

2
2cA

2e2io2T0UcðxÞ þ cc; ð21Þ

where the functions w1; w2; and Uc are solutions of the boundary-value problems:

Lw1 � 4o2
2w1 ¼

1
2
c00/f0

2f
0
2S ¼ �4bp4 sin px: Lw2 ¼ �4bp4 sin px; ð22; 23Þ

LUc � 4o2
2Uc ¼

X2

k¼1

½H00ðx � x�
k Þ �H00ðx � xþ

k Þ�; ð24Þ

with the boundary conditions (6).
The solutions of the first two boundary-value problems are obtained in the form

w1ðxÞ ¼ �
4b

b2 � 126
sin px and w2ðxÞ ¼ �

4b

b2 þ 2
sin px: ð25Þ

On the other hand, using the modal expansion method, the function Uc can be expressed as an
infinite series of the symmetric eigenmodes in the form

UcðxÞ ¼
XN
k¼0

m2kþ1

o2
2kþ1 � 4o2

2

f2kþ1ðxÞ; ð26Þ

where

mj ¼ f0
jðx

þ
1 Þ � f0

jðx
�
1 Þ þ f0

jðx
þ
2 Þ � f0

jðx
�
2 Þ ð27Þ

is the jth modal force produced by unitary moments delivered by the two actuators. The second-
order shape functions are shown in Fig. 2 when b ¼ 3:5; c1 ¼ c2 ¼ c=15; x1 ¼ 1=4; and x2 ¼ 3=4:
Four terms only in the series (26) were sufficient for convergence.

Substituting the second-order solution into the third-order problem, and enforcing solvability
of the resulting inhomogeneous partial-differential problem, yields the modulation equation

2io2ðD2A þ mAÞ ¼ io2kcmcA
2 %A þ aA2 %A þ 1

2
DeisT2 ; ð28Þ

where mc is the coefficient of the non-linear control-induced damping term, a is the effective

non-linearity coefficient and D ¼ /f ðxÞf2ðxÞS is the disturbance modal amplitude. The coefficient
mc is expressed as

mc ¼ f2
2c/f00

2f2S/c0U 0
cS ¼ �8

ffiffiffi
2

p b

b2 � 126
ðsin 2pxcÞ

2m1: ð29Þ
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On the other hand, the effective non-linearity coefficient is expressed as

a ¼ /f2f
00
2S 2/c0w02Sþ/c0w01Sþ

3

2
/f0

2f
0
2S

� 
¼ 16p4 378þ 61b2

ðb2 þ 2Þðb2 � 126Þ
: ð30Þ

In the next section, the steady-state responses of the beam with and without controls are put in
real form and their meaningful characteristics are discussed.

3.2. System responses

First, the slow dynamics are discussed by considering the modulation equations. These
equations describe the envelope of the fast oscillations at the system natural frequency; the
envelope is determined by the interaction of the excitation, damping, and control-induced forces
with the resonant parts of the non-linear restoring forces.

To transform the complex-valued modulation equation into real-valued equations for the
amplitude and phase, the polar transformation A ¼ 1=2 a expðibÞ expðiðst � gÞÞ is substituted into
Eq. (28) thereby yielding

’a ¼ �ma þ kcmca
3 þ ðD=2o2Þ sin g; ’g ¼ sþ ða=8o2Þa2 þ ðD=2o2aÞ cos g: ð31; 32Þ

ARTICLE IN PRESS

0.2 0.6 1.0

0.15

0.10

0.05

0.00

0.00

-0.50

-1.00

0.05

0.00

-0.05

0.0 0.4 0.8

x 1
x 2

U
c

x

Fig. 2. The second-order shape functions w1; w2; and Uc when b ¼ 3:5; c1 ¼ c2 ¼ c=15; x1 ¼ 1=4; and x2 ¼ 3=4:
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The steady-state responses of the controlled beam are obtained as the fixed points of the
modulation equations (31) and (32) (i.e., ’a ¼ ’g ¼ 0). As a result, periodic responses of the
controlled beam are governed by the frequency-response equation

s ¼ �ða=8o2Þa27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=ð4o2

2a2Þ � ðm� kcmca
2Þ2

q
ð33Þ

and the expression for the phase

tan g ¼ 8m� kcmca
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=ð4o2

2a2Þ � ðm� kcmca
2Þ2

q
: ð34Þ

Inspection of Eqs. (30) and (33) allows one to conclude that, when bo3
ffiffiffiffiffi
14

p
; ao0: Accounting

for this and the fact that the non-linear free oscillation frequency is given by

o2N ¼ o2 � ða=8o2Þa2;

the non-linear free oscillation frequency of the mode increases with the oscillation amplitude and
the mode is a hardening mode.

On the other hand, when b > 3
ffiffiffiffiffi
14

p
; a > 0; the non-linear free oscillation frequency decreases

with the oscillation amplitude, hence, the mode is a softening mode. When b ¼ 3
ffiffiffiffiffi
14

p
; a two-to-

one internal resonance between the first two modes is activated and the present asymptotic
expansion breaks down. In this case, an expansion accounting for the two-mode interaction is
needed to calculate the actual effective non-linearity coefficient [14].

Using Eqs. (17), (20), the polar transformation for A; and the frequency detuning O ¼ o2 þ e2s;
the deflection of the controlled beam is expressed as

wðx; tÞ ¼ a cosðOt � gÞf2ðxÞ þ
1
2

a2½cos 2ðOt � gÞw1ðxÞ þ w2ðxÞ�

� 1
2

kco2f
2
2ca

2 sin 2ðOt � gÞUcðxÞ þ?: ð35Þ

where a and g are governed, at steady state, by Eqs. (33) and (34), respectively.
Clearly, the frequency response equation and the phase of the uncontrolled beam can be

obtained from Eqs. (33) and (34) putting kc ¼ 0 into them. The ensuing frequency-response
equation of the uncontrolled resonance is

s ¼ �ða=8o2Þa27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=ð4o2

2a2 � m2

q
Þ; ð36Þ

whereas the phase is given by

tan g ¼ 8m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=ð4o2

2a2Þ � m2

q
: ð37Þ

Similarly, the deflection of the uncontrolled beam is expressed as

wðx; tÞ ¼ a cosðOt � gÞf2ðxÞ þ
1
2

a2½cos 2ðOt � gÞw1ðxÞ þ w2ðxÞ� þ?; ð38Þ

where a and g are governed by Eqs. (36) and (37), respectively.
In the next section, the performance of the non-linear control strategy is investigated.
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4. Control performance

It is clear from Eq. (33) that the amplitude of the controlled response is reduced as a result of
the non-linear quadratic damping term kcmca

2 which increases the overall system damping, more
effectively when mco0; assuming that kc is strictly positive. On account of Eq. (29) and of the fact
that m1o0; this coefficient is negative when bo3

ffiffiffiffiffi
14

p
and is positive when b > 3

ffiffiffiffiffi
14

p
: Further, as

expected, mc depends on xc and m1: The dependence on xc allows to conclude that jmcj is maximum
when xc ¼ 1=4 or 3=4: On the other hand, jmcj grows linearly with m1 which, in turn, depends on
the location and length of the actuators. However, often the actuator positions are physically
constrained.

In the proposed control architecture, because the actuation is provided by two equal piezo
actuators attached at one-fourth and three-fourth of the beam span and whose length is one-
fifteenth of the beam span (i.e., x1 ¼ 1=4; x2 ¼ 3=4; and c1 ¼ c2 ¼ c=15), it is

mc ¼ �
16pb

b2 � 126
ðcos pxþ

1 � cos px�
1 þ cos pxþ

2 � cos px�
2 Þ: ð39Þ

To evaluate the control performance, among a variety of possible cost functions, the selected
cost function is the maximum amplitude of the harmonic response component at the excitation
frequency attained by the beam when the frequency is varied near resonance. Of course, this cost
is calculated based on steady-state rather than on transient effects. Hence, it reflects the cost
predicted over long periods of operation where transients die out. Moreover, as alternative cost
function, the maximum of the integral of the squared deflection over the span attained in one
excitation cycle was also computed so as to capture directly higher-order effects. That is,

J ¼ max
tA½0;Tc�

Z 1

0

wðx; t; acÞ
2 dx

� �
; ð40Þ

where Tc is the period of oscillation and ac is the maximum stable value of the amplitude a at the
disturbance frequency. For the first cost function, a closed-form expression was obtained in the
form

ac ¼
�262=3mo2=3

2 þ 61=3ð9D
ffiffiffiffiffiffiffiffiffiffiffi
jmcjkc

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81D2jmcjkc þ 48m3o2

2

q
Þ2=3

6
ffiffiffiffiffiffiffiffiffiffiffi
jmcjkc

p
o1=3

2 ð9D
ffiffiffiffiffiffiffiffiffiffiffi
jmcjkc

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81D2jmcjkc þ 48m3o2

2

q
Þ1=3

: ð41Þ

The maximum amplitude of the system uncontrolled response is auc ¼ D=ð2o2mÞ: Accordingly,
the control performance can be quantified calculating the following performance function G ¼
100� ðauc � acÞ=auc which expresses the percent relative peak amplitude reduction. Because mc is
fixed once the number of actuators, their dimensions, and positions are chosen, the performance
function depends only on the control gain kc that can be varied. In Fig. 3, variation of the
performance function G with the control gain kc is shown. Interestingly, this function exhibits a
rather sharp increase in a small range of gains below 1 whereas it shows a saturation-type
behavior with a nearly flat trend for higher gains. More specifically, a 60% reduction is attained
with a gain slightly below 0.5 whereas the reduction becomes higher than 70% when kc ¼ 1: This
result makes the proposed control strategy effective and feasible because relatively small control
efforts are needed to obtain good control performances. In Table 1, the peak controlled response
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amplitude ac is reported along with the performance function calculated using either the cost
function based on the peak amplitude or that based on the maximum of the integral of the squared
steady-state beam deflection. For the uncontrolled beam when b ¼ 3:5; D ¼ 0:5; and m ¼ 0:01; the
following quantities were calculated: auc ¼ 0:633; suc ¼ 1:374 (point A in Figs. 4 and 5),
and Juc ¼ 0:416:

Indeed, it is critical to ascertain that the controlled responses are stable in the overall considered
frequency range. To this end, the eigenvalues of the Jacobian of Eqs. (31) and (32) were
calculated. The outcomes indicated that the steady-state responses are either stable foci or stable
nodes. In Fig. 4, some frequency-response curves of the uncontrolled and controlled beam are
shown. In this figure and henceforth, thick (dashed) lines denote stable (unstable) responses.

To gain more insight into the effects of the control action onto the beam dynamics, in Fig. 5,
variation of the phase of the steady-state system response with the frequency detuning is shown.
The uncontrolled response exhibits the well-known phase distortion effect exerted by the non-
linear resonance. The control action, instead, increasing the system damping, renders the phase
behavior closer to that of a linear system although slightly distorted.

Finally, to show the overall effectiveness of the control strategy including the transient
behavior, in Fig. 6, the time histories of the beam deflection at one-fourth of the beam span with
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Table 1

Control performance

kc ac G ¼ ðauc � acÞ=auc% ðJuc � JcÞ=Juc%

1 0.172 72.9 92.9

5 0.105 83.4 97.3

7.5 0.093 85.4 97.9

10 0.084 86.7 98.3
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and without controls are compared when the excitation frequency detuning is s ¼ 0:327 and
kc ¼ 10 (points D and E in Fig. 4). The initial conditions are að0Þ ¼ 0:3 and gð0Þ ¼ �0:49: These
time histories have been obtained integrating numerically Eqs. (31) and (32) with kc ¼ 0 and using
Eq. (38), for the uncontrolled case, and Eq. (35), for the controlled case, respectively. In addition,
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Fig. 5. Variation of the phase of the steady-state responses of the uncontrolled and controlled beam when b ¼ 3:5;
D ¼ 0:5; m ¼ 0:01; c1 ¼ c2 ¼ c=15; x1 ¼ 1=4; and x2 ¼ 3=4:

Fig. 4. Frequency-response curves of the uncontrolled and controlled beam for different control gains when b ¼ 3:5;
D ¼ 0:5; m ¼ 0:01; c1 ¼ c2 ¼ c=15; x1 ¼ 1=4; and x2 ¼ 3=4: Points A and B denote saddle-node bifurcations.
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the reduction of the overall beam deflection field is shown in Fig. 7 where there are reported the
deflections of the beam in the uncontrolled (point A in Figs. 4 and 5) and controlled (point C in
Fig. 4) cases at equally spaced discrete times in one excitation cycle. The response is reduced in the
overall beam span by an order of magnitude.

5. Conclusions

In this paper, a closed-loop non-linear control method to reduce the flexural forced vibrations
of a hinged–hinged initially imperfect beam has been investigated. The disturbance is involved in a
primary resonance with the first antisymmetric mode of the beam. The basic idea relates to the
fact that the non-collocated control action—bending moments imparted by two symmetrically
placed piezo actuators—is designed intelligently so as to have control authority onto
antisymmetric vibrations by exploiting the system non-linearities.

The fact that a non-linear controller with a symmetric input is shown to reduce also
antisymmetric vibrations entails that the control capabilities have been expanded by exploitation
of the structural non-linearities with respect to the linear theory. In fact, the same controller
designed primarily to reduce symmetric oscillations may be used to reduce antisymmetric
vibrations which, under some excitation conditions (e.g., as in suspension bridges), can be excited
simultaneously with symmetric vibrations.

As a distinguishing feature, the design process of the control law has been based on use of a
perturbation technique to facilitate understanding of the way the non-linear controller action can
affect the resonant system dynamics. Furthermore, the analytical approximate responses of the
beam, obtained with direct application of the method of multiple scales to the integral–partial
differential equations of motion and boundary conditions, were used to investigate the overall
features of the control method and the main technical conditions for its effectiveness. Along these
lines, it was possible to obtain a closed-form expression of a representative cost function which
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Fig. 6. Time histories of the beam deflection at x ¼ 1=4: (a) uncontrolled and (b) controlled when b ¼ 3:5; D ¼ 0:5;
s ¼ 0:327; m ¼ 0:01; c1 ¼ c2 ¼ c=15; x1 ¼ 1=4; x2 ¼ 3=4; and kc ¼ 10:
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allowed to study the performance of the control method with respect to variations of the control
gain. As a major outcome, for rather low gain values, the reduction in motion amplitude has been
shown to be about 70% at resonance.
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Fig. 7. Deflections of the beam in one excitation cycle (period T): (a) uncontrolled, s ¼ 1:374 and (b) controlled,

s ¼ 0:0245 with parameters as listed for Fig. 3.
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